304

Bioremediation for Sustainable Environmental Cleanup

Table 17.4. The list of sensing-related applications for g-C3N4-metal oxide heterojunction.

Photocatalyst

Application

Limit of detection (LOD)

References

MoO3-g-C3N4

Detection of Furazolidone

1.4 nM

Balasubramanian et al. 2019

Co3O4-g-C3N4

Detection of environmental

phenolic hormones

10−9 mol L–1

Sun et al. 2018

g-C3N4-NiO

Detection of quercetin

0.002 µM

Selvarajan et al. 2018

NiO-Co3O4-g-C3N4

Detection of tetra

bromobisphenol-A

~ 0.1 mmol L–1

Liu et al. 2017

g-C3N4-Mn3O4

H2S sensor

0.13 µg mL–1

Huan et al. 2010

WO3/g-C3N4

Detection of phosmet

3.6 nM

Bilal and Hassan 2021

CuO-g-C3N4

Aflatoxin B1 sensing

6.8 pg mL–1

Mao et al. 2021

17.5.3 Anti-Bacterial Study

Under variations in ultraviolet or visible light irradiation, the g-C3N4 can eradicate a number of sizes,

forms and architectures of bacteria, viruses, microorganisms and microalgae. Effective composites

to control microbes and water disinfection rely on fabricating g-C3N4 with various metal oxides.

Bio-hazards causing human health problems are frequently present in wastewater and polluted

water and contain different viruses, fungi, bacteria, etc. The groundbreaking research by (Matsunaga

et al. 1985) demonstrated that TiO2 could aid in the UV-light-induced inactivation of bacteria

like Escherichia coli, Saccharomyces cerevisiae and Lactobacillus acidophilus. Additionally,

g-C3N4/Cr-ZnO nanocomposites with superior antibacterial activity against Gram-positive

(Staphylococcus aureus, Bacillus subtilis) and the 60% g-C3N4/5%Cr-ZnO nanocomposite exhibited

the most potent antibacterial activity in this study. Escherichia coli and Staphylococcus aureus

showed excellent sterilizing performance for Fe-SnO2/g-C3N4 under sunlight, near-ultraviolet light

and daylight bulbs (Chen et al. 2020). Under daytime lighting, this structure’s sterilizing efficacy

is largely justified. Graphitic carbon nitride nanosheets coated with magnetic silver-iron oxide

nanoparticles showed antibacterial activity against E. coli germs (Pant et al. 2017). Additional

research on the disinfectant properties of g-C3N4 metal oxide-based nanoparticles is described in

Table 17.5.

Table 17.5. Studies on antibacterial properties of g-C3N4 metal oxide-based nanomaterials.

Photocatalyst

Light Source

Bacteria

Inhibition Amount

References

CeO2/g-C3N4

Xe lamp

E. coli

S. aureus

B. cerrous

S. abony

E. coli = 19.9 mm

S. aureus = 18.9 mm

B. cerrous = 16.04 mm

S. abony = 18.05 mm

Shoran et al. 2022

g-C3N4 /TiO2/Ag

Xe lamp

E. coli

84%

Sun et al. 2018

g-C3N4-m-Bi2O4

halogen lamp

(500 W)

E. coli

S. aureus

E. coli = ~11 ± 0.5 mm

S. aureus = 12–13 ± 0.5 mm

Shanmugam et al.

2020

Cu2O-g-C3N4

fluorescent lamp

(36 W)

P. aeruginosa,

B. subtilis,

S. aureus,

E. coli

P. aeruginosa = 6 ± 0.09 mm

B. subtilis = 22 ± 1.67 mm

S. aureus = 11 ± 1.22 mm

E. coli = 22 ± 1.67 mm

Meenakshisundaram

et al. 2019

TiO2/g-C3N4

E. coli

16%

Xu et al. 2016

α-Fe2O3/

CeO2 decorated g-C3N4

Xe light

(500W)

S. aureus,

E. coli

S. aureus = 11 ± 0.5 mm

E. coli = 12 mm

Vignesh et al. 2019

Ag/AgO-g-C3N4

Tungsten lamp

(100 W)

E. coli

99%

Meenakshisundaram

et al. 2019