304
Bioremediation for Sustainable Environmental Cleanup
Table 17.4. The list of sensing-related applications for g-C3N4-metal oxide heterojunction.
Photocatalyst
Application
Limit of detection (LOD)
References
MoO3-g-C3N4
Detection of Furazolidone
1.4 nM
Balasubramanian et al. 2019
Co3O4-g-C3N4
Detection of environmental
phenolic hormones
10−9 mol L–1
Sun et al. 2018
g-C3N4-NiO
Detection of quercetin
0.002 µM
Selvarajan et al. 2018
NiO-Co3O4-g-C3N4
Detection of tetra
bromobisphenol-A
~ 0.1 mmol L–1
Liu et al. 2017
g-C3N4-Mn3O4
H2S sensor
0.13 µg mL–1
Huan et al. 2010
WO3/g-C3N4
Detection of phosmet
3.6 nM
Bilal and Hassan 2021
CuO-g-C3N4
Aflatoxin B1 sensing
6.8 pg mL–1
Mao et al. 2021
17.5.3 Anti-Bacterial Study
Under variations in ultraviolet or visible light irradiation, the g-C3N4 can eradicate a number of sizes,
forms and architectures of bacteria, viruses, microorganisms and microalgae. Effective composites
to control microbes and water disinfection rely on fabricating g-C3N4 with various metal oxides.
Bio-hazards causing human health problems are frequently present in wastewater and polluted
water and contain different viruses, fungi, bacteria, etc. The groundbreaking research by (Matsunaga
et al. 1985) demonstrated that TiO2 could aid in the UV-light-induced inactivation of bacteria
like Escherichia coli, Saccharomyces cerevisiae and Lactobacillus acidophilus. Additionally,
g-C3N4/Cr-ZnO nanocomposites with superior antibacterial activity against Gram-positive
(Staphylococcus aureus, Bacillus subtilis) and the 60% g-C3N4/5%Cr-ZnO nanocomposite exhibited
the most potent antibacterial activity in this study. Escherichia coli and Staphylococcus aureus
showed excellent sterilizing performance for Fe-SnO2/g-C3N4 under sunlight, near-ultraviolet light
and daylight bulbs (Chen et al. 2020). Under daytime lighting, this structure’s sterilizing efficacy
is largely justified. Graphitic carbon nitride nanosheets coated with magnetic silver-iron oxide
nanoparticles showed antibacterial activity against E. coli germs (Pant et al. 2017). Additional
research on the disinfectant properties of g-C3N4 metal oxide-based nanoparticles is described in
Table 17.5.
Table 17.5. Studies on antibacterial properties of g-C3N4 metal oxide-based nanomaterials.
Photocatalyst
Light Source
Bacteria
Inhibition Amount
References
CeO2/g-C3N4
Xe lamp
E. coli
S. aureus
B. cerrous
S. abony
E. coli = 19.9 mm
S. aureus = 18.9 mm
B. cerrous = 16.04 mm
S. abony = 18.05 mm
Shoran et al. 2022
g-C3N4 /TiO2/Ag
Xe lamp
E. coli
84%
Sun et al. 2018
g-C3N4-m-Bi2O4
halogen lamp
(500 W)
E. coli
S. aureus
E. coli = ~11 ± 0.5 mm
S. aureus = 12–13 ± 0.5 mm
Shanmugam et al.
2020
Cu2O-g-C3N4
fluorescent lamp
(36 W)
P. aeruginosa,
B. subtilis,
S. aureus,
E. coli
P. aeruginosa = 6 ± 0.09 mm
B. subtilis = 22 ± 1.67 mm
S. aureus = 11 ± 1.22 mm
E. coli = 22 ± 1.67 mm
Meenakshisundaram
et al. 2019
TiO2/g-C3N4
-
E. coli
16%
Xu et al. 2016
α-Fe2O3/
CeO2 decorated g-C3N4
Xe light
(500W)
S. aureus,
E. coli
S. aureus = 11 ± 0.5 mm
E. coli = 12 mm
Vignesh et al. 2019
Ag/AgO-g-C3N4
Tungsten lamp
(100 W)
E. coli
99%
Meenakshisundaram
et al. 2019